Negative regulation of RIG-I-mediated innate antiviral signaling by SEC14L1.
نویسندگان
چکیده
Retinoic acid-inducible gene I (RIG-I) is a key sensor for recognizing nucleic acids derived from RNA viruses and triggers beta interferon (IFN-β) production. Because of its important role in antiviral innate immunity, the activity of RIG-I must be tightly controlled. Here, we used yeast two-hybrid screening to identify a SEC14 family member, SEC14L1, as a RIG-I-associated negative regulator. Transfected SEC14L1 interacted with RIG-I, and endogenous SEC14L1 associated with RIG-I in a viral infection-inducible manner. Overexpression of SEC14L1 inhibited transcriptional activity of the IFN-β promoter induced by RIG-I but not TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3). Knockdown of endogenous SEC14L1 in both HEK293T cells and HT1080 cells potentiated RIG-I and Sendai virus-triggered IFN-β production as well as attenuated the replication of Newcastle disease virus. SEC14L1 interacted with the N-terminal domain of RIG-I (RIG-I caspase activation and recruitment domain [RIG-I-CARD]) and competed with VISA/MAVS/IPS-1/Cardif for RIG-I-CARD binding. Domain mapping further indicated that the PRELI-MSF1 and CRAL-TRIO domains but not the GOLD domain of SEC14L1 are required for interaction and inhibitory function. These findings suggest that SEC14L1 functions as a novel negative regulator of RIG-I-mediated antiviral signaling by preventing RIG-I interaction with the downstream effector.
منابع مشابه
Induction of Siglec-G by RNA Viruses Inhibits the Innate Immune Response by Promoting RIG-I Degradation
RIG-I is a critical RNA virus sensor that serves to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling remains to be fully understood. We report here that RNA viruses, but not DNA viruses or bacteria, specifically upregulate lectin family member Siglecg expression in macrophages by RIG-I- or NF-κB-dependent mechanisms. Siglec-G-induced recruitment of SH...
متن کاملRAVER1 is a coactivator of MDA5-mediated cellular antiviral response.
Detection of viral nucleic acids by pattern recognition receptors initiates type I interferon (IFN) induction and innate antiviral response. The RIG-I-like receptors (RLRs), including RIG-I and MDA5, recognize cytoplasmic viral RNA in most cell types and are critically involved in innate antiviral response. RIG-I and MDA5 are structurally related and mediate similar signaling pathways. While th...
متن کاملCritical Role of IRF-3 in the Direct Regulation of dsRNA-Induced Retinoic Acid-Inducible Gene-I (RIG-I) Expression
The cytoplasmic viral sensor retinoic acid-inducible gene-I (RIG-I), which is also known as an IFN-stimulated gene (ISG), senses viral RNA to activate antiviral signaling. It is therefore thought that RIG-I is regulated in a STAT1-dependent manner. Although RIG-I-mediated antiviral signaling is indispensable for the induction of an appropriate adaptive immune response, the mechanism underlying ...
متن کاملPKACs attenuate innate antiviral response by phosphorylating VISA and priming it for MARCH5-mediated degradation
Sensing of viral RNA by RIG-I-like receptors initiates innate antiviral response, which is mediated by the central adaptor VISA. How the RIG-I-VISA-mediated antiviral response is terminated at the late phase of infection is enigmatic. Here we identified the protein kinase A catalytic (PKAC) subunits α and β as negative regulators of RNA virus-triggered signaling in a redundant manner. Viral inf...
متن کاملRequirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression
The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mito...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 87 18 شماره
صفحات -
تاریخ انتشار 2013